
CASPT 2018

Tradeoff Between Processing Time and Solution Quality

for an A*-Guided Heuristic Applied to a Multi-Objective

Bus Passenger Trip Planning Problem

Sylvain M. R. Fournier ·

Eduardo Otte Hülse ·

Éder Vasco Pinheiro

Abstract The Bus Passenger Trip Planning Problem is the decision problem
the bus passenger faces when he has to move around the city using the bus
network: how and what time will he get to the destination? Or possibly: given
a fixed time to get to the destination, what time will he have to leave? We
show that both questions are computationally equivalent and can be answered
using an A*-guided and Pareto domination-based heuristic. The A* procedure
drives the search estimating the time of arrival until the target node, even in
intermediate nodes. Domination is triggered each time a new label is gener-
ated, in order to prune out labels defining subpaths with high values for the
objectives we focus on: arrival time at destination, number of transfers and
total walking distance. We discuss tradeoff between processing time and the
solution quality through a parameter called A* speed. The tool is available for
transit users on a day-to-day basis in Brazilian cities of up to about 800,000
inhabitants and returns a variety of solutions within a couple of seconds at
most.

Keywords Trip Planning Problem · Pareto Border · A* algorithm

1 Context

Stimulating people to switch their means of transportation from individual to
public alternatives is an important point in addressing the problem of mobility

Sylvain M. R. Fournier · Eduardo Otte Hülse · Éder Vasco Pinheiro
WPLEX Software Ltda.
Rod SC 401, 8600 - Bloco 5, Sala 101
Santo Antônio de Lisboa
Florianópolis - SC, 88050-000
Brazil
Tel.: +55-48-3239-2428
E-mail: sylvain@wplex.com.br - eduardo.hulse@wplex.com.br - eder.pinheiro@wplex.com.br

mailto:sylvain@wplex.com.br
mailto:eduardo.hulse@wplex.com.br
mailto:eder.pinheiro@wplex.com.br

in Brazilian cities. A study by CNI RSB - Urban Mobility, 20151 indicates that
only 24% of the Brazilian population use buses to commute. Nevertheless, bus
riding is the most widespread public transportation option in the country. One
of the reasons preventing more people from adopting this transport mode is
the lack of clear and updated information. In this sense, powerful passenger
information tools help to increase its attractiveness.

Using an online Trip Planner, the passenger is given a list of route options
in the public transport network to go from his current place (or any other
starting point) to a desired location. Each option defines values for the criteria
the passenger wishes to minimize, such as the time of arrival, the number of
transfers and the total walking distance. Instead of minimizing his time of
arrival to his destination, the passenger can also provide a target arrival time
and the tool maximizes his departure time.

WPLEX Software is a Brazilian software company that develops software
for bus transit systems and companies, and provides a continuously available
Trip Planning tool in several Brazilian cities such as Guarujá2, São Bernardo
do Campo3 and Florianópolis4.

Section 2 describes the features of our Trip Planner, while section 3 formu-
lates it as a multi-objective problem. Section 4 shows why the Trip Planner by
Departure Time and the Trip Planner by Arrival Time are equivalent problems
and how they can be solved using the same algorithm. In section 5 we present
an A*-based algorithm to solve the problem. Section 6 shows the influence of
an A* parameter on both the algorithm performance and the solution qual-
ity and we finally draw some conclusions and perspectives for future work in
section 7.

2 The Multi-Objective Bus Passenger Trip Planning Problem

In the problem tackled in this paper, the passenger expects to find some trip
options for his journey from an origin to a destination, using the city bus
network, all routes schedules and the current buses positions.

The data about the bus route network and the bus schedules is given by
the bus company offering the service, and is considered here to be static data
at the time of the passenger request.

The user needs to specify the following information:

• origin (current) location (it may be automatically picked out from the
user’s smartphone location),

• desired destination location,

1 https://static-cms-si.s3.amazonaws.com/media/filer_public/7f/1d/

7f1de722-455b-4a18-bc0a-6bdc5430b9a7/retratosdasociedadebrasileira_27_

mobilidadeurbana.pdf
2 https://guaruja.onibusfacil.com.br/tripplanner.jsp
3 http://www.partiusbc.com.br
4 https://www.floripanoponto.com.br/tripplanner.jsp

https://static-cms-si.s3.amazonaws.com/media/filer_public/7f/1d/7f1de722-455b-4a18-bc0a-6bdc5430b9a7/retratosdasociedadebrasileira_27_mobilidadeurbana.pdf
https://static-cms-si.s3.amazonaws.com/media/filer_public/7f/1d/7f1de722-455b-4a18-bc0a-6bdc5430b9a7/retratosdasociedadebrasileira_27_mobilidadeurbana.pdf
https://static-cms-si.s3.amazonaws.com/media/filer_public/7f/1d/7f1de722-455b-4a18-bc0a-6bdc5430b9a7/retratosdasociedadebrasileira_27_mobilidadeurbana.pdf
https://guaruja.onibusfacil.com.br/tripplanner.jsp
http://www.partiusbc.com.br
https://www.floripanoponto.com.br/tripplanner.jsp

• departure (ready) time (and date, as the bus company defines specific bus
schedules for different day types, such as weekday, Saturday, Sunday, etc.).
By default, it is set to the present date and time.

The tool then suggests some bus trip options, each one containing the
following information:

• bus routes to be used along the trip,
• for each transfer: get off time from the previous bus and boarding time
onto the next bus,

• time of departure from origin location (it may be after the “ready” time
given by the user),

• time of arrival at destination location,
• total walking time and distance.

For a request close to the present time, the current positions of buses
(available through GPS) and traffic conditions update the static daily bus
schedule considered to generate the trip plan options.See Jariyasunant et al
(2010) for a similar inclusion of realtime conditions.

All passengers wish to arrive as soon as possible at their destination, but
some may want to avoid transfers as much as possible or prefer short walks,
even if this means a later arrival time. Therefore, the Trip Planning tool should
provide a broad range of options to suit every user’s needs.

In a simple Shortest Path Problem as described by Zhao et al (2008); Nan-
nicini et al (2011); Idri et al (2017) or an Earliest Arrival Problem (see Yang
et al (2012); Wang et al (2015)), the only aim is to minimize the arrival time
to destination. Other criteria are also considered in this paper: the number of
transfers and the total walking distance. Bast et al (2015) give a comprehensive
review of similar problems and algorithms to solve them.

Several bus routes usually share common sections, which allows passengers
to have backup options in case of an unpredictable event such as an acci-
dent slowing down the traffic and preventing them from performing their next
transfer. Thus, it makes sense to present a variety of options for the passenger.

Figures 1, 2 and 3 depict some options of passenger trips for a request
made at 21:45 between the neighbourhoods of Córrego Grande and Lagoa da

Conceição in Florianópolis, Brazil. Table 1 gives a summary of the objective
values for each option. Every option is the best with respect to one specific
criterion. If a passenger wishes to arrive as fast as possible, he would certainly
choose the figure 1 option. On the other hand, if he wants to avoid transfers
and minimize the risk of delays, he will probably choose the option given in
figure 3.

Table 1 Objective values for the Trip Planning request example

Fig. 1 Fig. 2 Fig. 3

arrival time at destination 22:28 22:33 22:44
number of transfers 1 1 0

total walking distance 610m 481m 491m

Fig. 1 Earliest arrival option, with one transfer

Fig. 2 Option with a short walking distance and one transfer

Fig. 3 Direct ride option, arriving after both previous options

3 Time-dependent formulation with timetable

In this section, the problem introduced previously is described formally. For a
matter of clarity, we chose Greek letters to denote all the time-related variables
or constants.

The problem formulated in sections 3.1, 3.2 and 3.3 is called Trip Plan-

ning by Departure Time (or TPDT). The later sections (3.4 and 3.5) de-
scribe possible additional features of this problem.

3.1 Graph and timetable

The graph defined to perform the search is usually either a time-expanded
graph (as for Jariyasunant et al (2010); Wang et al (2015)) or a time-dependent
graph. Time-expanded graphs can be too large and memory-consuming for the
Trip Planner to be able to deal with several requests per second (Pyrga et al
(2008)).

Among the time-dependent approaches, Cooke and Halsey (1966) and
Dreyfus (1969) propose a generalized Dijkstra algorithm to solve the mono-
objective time-dependent shortest path problem. Zhao et al (2008) present an
A* algorithm where the heuristic function takes the current time as a param-
eter. Nannicini et al (2011) introduce a bidirectionnal A* search on large-scale
networks. Idri et al (2017) use an A* algorithm on an heuristically restricted
search space. Brodal and Jacob (2004) model the timetable through a time-
dependent network so that their problem can be solved using Dijkstra-like
methods. Mandow and De La Cruz (2010) present a multi-objective A*-based
heuristic and Sanders and Mandow (2013) find all Pareto-optimal paths using
a parallel label-setting algorithm.

The network in this paper is time-dependentwhere the transit-time func-
tion is given by the bus timetables stored as distinct data structures and not
included directly in the graph.

The bus route network is defined in a directed graph G = (V,E) where V

is the set of vertices (all the possible reference locations and bus stops) and E

is the set of directed edges, made of:

• a set ER of route edges, and
• a set EW of walking edges.

Sets ER and EW are disjoint and such that E = ER∪EW . Every edge e in
ER is a street link between two successive bus stops in at least one route path.
The set of all the bus routes that have edge e inside their path are denoted by
R(e), and R is the set of all bus routes. In addition, every walking edge e in
EW is such that R(e) = ∅ and is associated with a walking distance d(e) and
a walking duration δ(e).

A path is a sequence of nodes in V : P = (v1v2 · · · vivi+1 · · ·) such that
∀i ≥ 1, (vivi+1) ∈ E. A route path is such that ∀i ≥ 1, (vivi+1) ∈ ER,
whereas a passenger path can be made of edges from both ER and EW . By

extension, path P can also be seen as a sequence of edges. Formally, for any
edge e ∈ P, ∃i, e = (vivi+1).

Each bus route r of the company is defined by its path of length mr along
the geographical network, which is the sequence of mr nodes in V through
which it goes : Pr = (vr1v

r
2 · · · v

r
mr

), where for each i such that 1 ≤ i ≤ mr − 1,
(vri v

r
i+1) ∈ ER and r ∈ R(vri v

r
i+1). Each bus route r ∈ R is associated with a

sequence of nr bus trips. Each bus trip is a bus ride along the bus route at a
certain time of the day. It is defined by the list of themr times at which the bus
arrives at each bus stop along the route path related with the trip. Formally, if
r is a bus route, its u-th trip can be defined by the times θru,vr

1
, θru,vr

2
, · · · , θru,vr

mr

where ∀i, 2 ≤ i ≤ mr, θ
r
u,vr

i
is the time the bus is at bus stop i. We suppose

here that the bus layover is zero at every intermediate stop, meaning that
the bus leaves just after it arrives.

In summary, all the bus trips of a given route r define a matrix θr of nr

lines and mr columns of trip times from the first node of the route path to the
last node. This matrix is the complete daily timetable for route r, and strictly
increases linewise and columnwise: for each u such that 1 ≤ u ≤ nr and for
each i such that 1 ≤ i ≤ mr,

if i ≤ mr − 1 then θru,vr
i+1

> θru,vr
i

(1)

if u ≤ nr − 1 then θru+1,vr
i
> θru,vr

i
(2)

Inequality (1) states that the duration between two successive stops is
positive, whereas inequality (2) ensures that the trips in the matrix are sorted
in increasing order of their first stop time. This inequality also ensures that
the trips don’t overlap: if a bus departs before another one, it won’t arrive
after the other in any subsequent bus stop, which is a reasonable practical
assumption. The contrary would mean that the buses overtake one another,
which is operationally avoided.

Figure 4 and table 2 depict an example of graph and timetable on a simple
network, with two bus routes performing three trips overall.

Table 2 Example of timetable for the previous graph, including 2 trips for route r1 and
one single trip for route r2

Route Trips

r1 v1 v2 v3

08:00 08:03 08:10
08:50 08:54 09:00

r2 v2 v1 v3

08:30 08:35 08:55

3.2 Solution description

The user defines a source node s and a target node t. He also defines a time
Γ which is the date and time he is ready to start from node s.

walking edge
route edge

s t

r2

r2

r1

v2

v1

v3

δ = 12 sec

d = 10 m

δ = 120 sec

d = 100 m

d = 50 m

δ = 60 sec

r1

Fig. 4 Example of Trip Planner graph with 3 intermediate nodes and 2 bus routes

A Trip Planning option (or solution option) is composed of:

• a passenger path of q nodes P = (v1v2 · · · vq),
• the arrival time at each node of the path γ1, γ2, · · · , γq,
• the index of the route taken at each step r1, r2, · · · , rq−1 (ri is the route
between vi and vi+1),

• the index of the trip taken at each step u1, u2, · · · , uq−1.

In the following, the expression “passenger path” sometimes refer to a
solution option, meaning that this path also contains all the other attributes
(arrival times, routes and trips).

These option attributes are subject to the following constraints:

• v1 = s, vq = t, γ1 = Γ ,
• ∀i, 1 ≤ i ≤ q − 1, γi < γi+1,
• ∀i, 1 ≤ i ≤ q − 1, if edge (vivi+1) ∈ P ∩ EW (walking edge), then we have
γi+1 = γi + δ(vivi+1) and by convention ri = ui = 0.

• ∀i, 1 ≤ i ≤ q − 1, if edge (vivi+1) ∈ P ∩ ER (route edge) then:
• ri ∈ R(vivi+1) (ri is one of the routes going through edge (vivi+1)),
• 1 ≤ ui ≤ nri (ui is one of route ri’s trips),
• γi+1 ≥ θriui,vi+1

(arrival at node vi+1),
• γi ≤ θriui,vi

(departure from node vi),

The arrival time at the next node in the case of a route edge could also be
stated as exactly γi+1 = θriui,vi+1

because there is no point in chosing a higher
value for γi+1. It is written here as an inequality for reasons of symmetry with
the departure time constraint.

A passenger boarding can be seen as an index i along path P such that
ri 6= 0 and ri 6= ri−1: the path is going through a route edge on i and this
route is not the same as the previous one (which can possibly be a walk).
The number of boardings b(P) of a passenger path P = (v1v2 · · · vq) is the
number of times a route ri is such that ri 6= 0 and ri 6= ri−1 along the path.

LetR∗(P) be the sequence of all bus routes along P : R∗(P) = (ri)06=ri 6=ri−1
.

Then b(P) is simply the size of R∗(P): b(P) = |R∗(P)|.

3.3 Objectives

The number of transfers is exactly b(P) − 1 (or 0 if b(P) = 0, but pure
walking paths are disconsidered) so minimizing the number of transfers is the
same as minimizing b(P).

Given a final passenger path P = (v1v2 · · · vq), the objective is to minimize
several criteria:

• the arrival time γ(P) = γq,
• the number of boardings b(P),
• the total walking distance d(P) =

∑
e∈P∩EW

d(e).

It is also possible to minimize the total trip fare, which depends on the bus
types covering the bus routes along the passenger’s path. For example, a pas-
senger will pay an extra fare in a so-called executive bus with air conditioning.
Moreover, in some cities, when a passenger buys a ticket, he may be able to
ride several trips within a time window with a single fare. After this time
window, he will need to pay another fare if he has to take another bus. The
fare calculation will not be considered here so as to maintain the formulation
concise.

3.4 Transfer delay constraint

When switching buses, the passenger could be prompted to arrive earlier than
a minimum time (e.g. at least three minutes) before the next bus. This gives
the passenger convenient get off and get on times and helps decreasing the risk
of not catching the next bus if the current bus gets late. This minimum time
is called transfer delay duration and is denoted by T .

It is possible to enforce that, whenever (vivi+1) ∈ P ∩ER (route edge) and
ri 6= ri−1 (passenger boards onto a new bus at vi), the following constraint
holds: γi ≤ θriui,vi

− T .

3.5 Transfer location preference

In case of transfer between two routes sharing a common section (same se-
quence of stops), passengers usually choose to switch buses as early as possible
to avoid the situation when the next bus of the transfer gets past the current
one. In addition, bus terminals provide facilities (clear information, plat-
forms for the disabled, etc.) to improve the comfort, speed and safety for the
waiting. Therefore, passengers may prefer to wait for their bus at the terminal
to perform their scheduled transfer.

This transfer location preference is modelled as follows: consider a pas-
senger path P = (v1v2 · · · vq). Suppose that for two points g and h in the
path such that 1 < g < h < q, there are two routes x and y such that
∀i, g ≤ i < h, {x, y} ⊂ R(vivi+1). That is, routes x and y share the same sub-
path between nodes vg and vh. Figure 5 depicts a common section for routes
x and y.

x

y

Fig. 5 Possible transfer locations incoming through route x and outgoing through route y

Suppose further that rg−1 = x and rh = y, meaning that the passenger
has to switch between a bus of route x and a bus of route y at some node
between vg and vh, and suppose that such a change is possible in any of those
nodes. For this, we suppose that trips ug−1 on route x and uh on route y are
such that at any node in the common subpath, trip ug−1 arrives before
trip uh, considering the transfer security threshold T (see section 3.4 for its
definition), meaning that the passenger has enough time to switch between
both buses. Formally, ∀i, g ≤ i ≤ h, θxug−1,vi

≤ θyuh,vi
− T .

Then the following holds:

• If the sequence of nodes vg · · · vh contains no bus terminal, the transfer
between routes x and y must be performed at node vg. In other words:
∀i, g ≤ i < h, ri = y and ui = uh.

• If the sequence of nodes vg · · · vh contains at least one bus terminal (e.g.
vz1 , vz2 , · · ·) , the transfer between routes x and y is performed at the first
bus terminal in the sequence, denoted by vz1 :
• ∀i, g ≤ i ≤ z1 − 1, ri = x and ui = ug−1.
• ∀i, z1 ≤ i < h, ri = y and ui = uh.

4 Trip Planning by Arrival Time

In the Trip Planning by Arrival Time (TPAT), instead of being available
at a given time and minimizing his arrival time at his destination (see the
TPDT problem described above), the passenger may be interested in finding
out when he’ll have to leave from his current place to be able to arrive at some
other place at a given time. For example, what time do I have to leave home
so that I can get to work at 08:00 AM?

Formally, if the date and time the passenger wishes to arrive at node t is
Γ , the path arrival time is constrained to γq = Γ (with the same notations as
previously), and the departure time γ1 should be maximized (which is the
only difference to the TPDT objectives).

Theorem 1 The TPDT and the TPAT are computationally equivalent: from

any instance of one problem, we can build an instance of the other problem

such that any optimal solution in the problem can be matched with an optimal

solution in the other problem.

The idea of the proof is similar as the forward and backward search intro-
duced by Wu and Hartley (2004). Here both the graph and the route timeta-
bles are reverted, and the trip plan is requested from the original target to the
original source. We show here that TPDT ≤p TPAT (TPDT reduces polyno-
mially to TPAT) by mapping this instance of the TPDT into an instance of
the TPAT. We could show similarly that TPAT ≤p TPDT.

Figure 6 and table 3 depict the TPAT graph and timetable corresponding
to the TPDT graph and timetable given in figure 4 and table 2.

walking edge
route edge

s t

r2

r2

r1

v2

v1

v3

δ = 12 sec

d = 10 m

δ = 120 sec

d = 100 m

d = 50 m

δ = 60 sec

r1

Fig. 6 Definition of the TPAT graph with reversed arcs

Table 3 Definition of the TPAT timetable, with reversed and negated times

Route Trips

r1 v3 v2 v1

-08:10 -08:03 -08:00
-09:00 -08:54 -08:50

r2 v3 v1 v2

-08:55 -08:35 -08:30

Proof. Consider an instance of the TPDT described above and formulated in
section 3.

The TPDT is described by its graph G = (V,E) where E = ER ∪EW and
by its set of bus routes R, each of which (r ∈ R) is defined by its path Pr

and its timetable θr. As stated above, a solution option between nodes s and
t is defined by its path P = (vi)

q
i=1, its arrival times at each node (γi)

q
i=1, its

route at each step (ri)
q−1
i=1 and its trip at each step (ui)

q−1
i=1 .

From this TPDT we build a TPAT instance as follows: let G′ = (V ′, E′)
be its graph where E′ = E′

R ∪E′
W is such that:

• V ′ = V (same nodes as in the TPDT graph),
• |E′| = |E| and ∀e = (ij) ∈ E, e′ = (ji) ∈ E′ (TPDT arcs are reverted),

where R(e′) = R′(e) (the set of routes R′ is defined just below), e ∈ EW ⇔
e′ ∈ E′

W and if e ∈ EW then δ(e′) = δ(e) and d(e′) = d(e) (same walking
duration and distance for both arcs).

Furthermore, for each TPDT route r ∈ R we associate a TPAT route
r′ ∈ R′ such that:

• its path Pr′ = (vrmr
vrmr−1 · · · v

r
1) = (vrmr−i+1)

mr

i=1 where route r’s path is
Pr = (vr1v

r
2 · · · v

r
mr

) (TPDT route paths are reverted),
• each trip u, 1 ≤ u ≤ nr of route r is associated to a trip u′ = nr − u+ 1 of

route r′ such that: ∀i, 1 ≤ i ≤ mr, let i
′ = mr − i + 1. Then 1 ≤ i′ ≤ mr

and θr
′

u′,vr

i′
= −θru,vr

i
(TPDT timetable is reverted and negated).

The timetable matrix then maintains its linewise and columnwise time-
increase property:

• θr
′

u′+1,vr

i′
− θr

′

u′,vr

i′
= −θru−1,vr

i
+ θru,vr

i
> 0,

• θr
′

u′,vr

i′+1

− θr
′

u′,vr

i′
= −θru,vr

i−1
+ θru,vr

i
> 0.

From a TPDT s-to-t solution option, we define a TPAT t-to-s solution
option as follows:

• its path P ′ = (v′1v
′
2 · · · v

′
q) = (vqvq−1 · · · v1) (reversed TPDT path),

• its arrival times at each node ∀i, 1 ≤ i ≤ q, γ′
i = −γq−i+1,

• its route and trip at each step ∀i, 1 ≤ i ≤ q − 1, r′i = rq−i and u′
i = uq−i.

We show that the TPAT solution option complies with the rules described
in section 3.2, except the specific TPAT requirement that γ′

q = γ1 = Γ is the
maximum expected arrival time at the last TPAT node s:

• v′q = v1 = s (node s is the destination of the TPAT we defined)
• v′1 = vq = t

• ∀i, 1 ≤ i ≤ q − 1, γ′
i+1 − γ′

i = −γq−i + γq−i+1 > 0
• ∀i, 1 ≤ i ≤ q−1, if (v′iv

′
i+1) is a walking edge then (vq−ivq−i+1) is a walking

edge in the original TPDT graph, therefore:

γ′
i+1 = −γq−i = −(γq−i+1 − δ(γq−iγq−i+1)) = −γq−i+1 + δ(v′iv

′
i+1)

= γ′
i + δ(v′iv

′
i+1)

Besides, r′i = rq−i = 0 and u′
i = uq−i = 0.

Suppose now that (v′iv
′
i+1) is a route edge. So is (vq−ivq−i+1) in the TPDT

graph. Then:

• rq−i ∈ R(vq−ivq−i+1), which means r′i ∈ R(v′iv
′
i+1). Also, as uq−i is a trip

from route rq−i, u
′
i is a trip from route r′i (in other words, 1 ≤ u′

i ≤ nr′
i
).

• γq−i ≤ θ
rq−i

uq−i,vq−i (departure from vq−i). Given that, by definition:

γ′
i+1 = −γq−i and θ

rq−i
uq−i,vq−i = −θ

r′i
u′

i
,v′

i+1

, we finally have γ′
i+1 ≥ θ

r′i
u′

i
,v′

i+1

,

which is the arrival time constraint at v′i+1.
• γq−i+1 ≥ θ

rq−i
uq−i,vq−i+1 (arrival at vq−i+1). Similarly:

γ′
i = −γq−i+1 and θ

rq−i

uq−i,vq−i+1
= −θ

r′i
u′

i
,v′

i

, which yields γ′
i ≤ θ

r′i
u′

i
,v′

i

(depar-

ture time constraint from γ′
i).

We still need to show that a solution option of the TPAT instance is optimal
with respect to a given criterion if and only if the corresponding TPDT solution
option is optimal with respect to the same criterion. In fact, we show that both
the number of boardings and the walking distance are the same values in both
problems. Regarding the departure time (in the TPAT) or arrival time (in the
TPDT), they are opposite one another, so maximizing one will minimize the
other one. Recall that every criterion is described in section 3.3.

First consider the number of boardings in the TPDT b(P) and the number
of boardings in the TPAT b(P ′). Recall that, by definition, b(P) = |R∗(P)|
where R∗(P) = (ri)06=ri 6=ri−1

is the sequence of all the routes along P. Then
similarly b(P ′) = |R∗(P ′)|. As by definition R∗(P ′) has the same elements as
R∗(P) in reverse order, its size is the same as R∗(P). Then b(P) = b(P ′).

The walking distance is also simple to calculate: in the TPAT instance its
definition is

∑
e∈P ′∩E′

W

d(e). As the arcs in P ′ ∩ E′
W are the same as those

in P ∩ EW but they are just reversed and with the same walking distance,∑
e∈P ′∩E′

W

d(e) =
∑

e∈P∩EW
d(e).

To complete the proof, we finally show that the departure time in the
TPAT and the arrival time in the TPDT have opposite values. Recall that
∀i, 1 ≤ i ≤ q, γ′

i = −γq−i+1. Especially for i = 1, γ′
1 = −γq, which means that

maximizing γ′
1 is the same as minimizing γq.

⊓⊔

This theorem and proof also introduce a way to solve the TPAT using an
already implemented TPDT algorithm. By reverting the input data (graph
and timetable) and applying the TPDT algorithm, and finally reverting the
solution option back to the original values, we are able to solve the TPAT as
efficiently as the TPDT, using the algorithm described in the next section.

5 A*-guided algorithm with Pareto domination-based elimination

The solution process for the problem described in the previous section is guided
by an A* procedure over the graph defined by the bus route network. For that,
we use a trip time matrix similar as the one introduced by Delling et al

(2012). As in Dijkstra’s shortest path algorithm, labels are selected among a
set of open labels and expanded over the graph during the solving process.
Each label L is related to a given node vl of the network and its path Pl =
(v1v2 · · · vl) of length l (with v1 = s) and contains the same information as for
a solution option path P , namely: the time of arrival at the current node γl,
the number of transfers b(L) and the total walking distance d(L).

During its processing, the algorithm maintains a priority queue of open
labels and in the main loop, an open label is selected and expanded, creating
new open labels defined from the label node’s outgoing edges that are in turn
inserted in the priority queue.

5.1 Label expansion

A label expansion is the generation of new labels from the current label and
all the neighbour edges, using all the bus routes available on these edges as
well as the walking edges.

The selection for the next label to be expanded is based on the minimum

expected arrival time at the target node t and considers the objective of
minimizing the arrival time γq as a driver for the search. One of the conse-
quences is that the first solution options found are one of the earliest arriving
ones overall, regardless of the values of the other objectives.

The expected arrival time at the target node t from label L is defined
as λ(L) = γ(L) + τ(vl, t), where:

• γ(L) = γl is the arrival time at the label node vl (see its definition in
section 3.2),

• τ(vl, t) is an estimate of the duration of a ride between vl and t.

The time on the path’s first node is γ1 = Γ and if l ≥ 2, γl depends on the
incoming edge kind:

• if (vl−1vl) ∈ EW then γl is computed using the value γl−1 from the father
label: γl = γl−1 + δ(vl−1vl),

• if (vl−1vl) ∈ ER then γl is the time read in the timetable matrix corre-
sponding to a route rl−1 and a trip ul−1 on node vl: γl = θ

rl−1

ul−1,vl where
rl−1 ∈ R(vl−1vl) and 1 ≤ ul−1 ≤ nrl−1

.

The duration of a ride between any node v and the target node t is esti-

mated as τ(v, t) = d(v,t)
σ

, where:

• d(v, t) is the geographical distance between nodes v and t,
• σ is a speed parameter called A* speed.

The value of parameter σ should be chosen carefully: unless this value is
sufficiently high, the expected arrival time at the target λ(L) is not garanteed
to be a lower bound of the actual arrival time at t of any s-t path generated
from label L. For example, if we set σ as the maximum possible speed for a city
bus (e.g. 80 km/h), λ(L) will always be a lower bound for the actual arrival

time at t for any label generated from L which proves the admissibility of
our A*-based heuristic. However, chosing a too high value can provide a poor
lower bound in most cases as a bus will not always be available at once at
the node and it will rarely go straight to the target node at maximum speed.
Tradeoff between the algorithm’s processing time and the solution quality
through choices of values for σ will be discussed in section 6.

When creating a new label from the current label and all the current node’s
neighbour edges, we need to determine which will be the first possible trip of
each outgoing route at the time given by the label. Recall that for each route
r ∈ R, each column of matrix θr (sequence of trip departure times in the
same node) is sorted in increasing order, as stated in inequality (2). In case
of a transfer, the next possible trip of each route going through a given node
can be found solving a binary search over the trips in the route timetable.
Otherwise, the trip of the next label can be the same as the current label’s
trip.

5.2 Stopping conditions

Unlike usual A* algorithms, our algorithm doesn’t stop at the first solution
option it finds. Instead, it carries on the search until it finds some acceptable
solution options that, for each criterion, have a better value or similar as
the first option found. For example, independently of the values on the other
criteria, it will eventually reject an option with five transfers when the first
solution option found has a single one.

The algorithm main loop stops whenever:

• no more labels are available to be expanded (empty priority queue),
• the number of solution options (s-t paths) found so far have reached a
predefined quantity (e.g. 10 options),

• the number of expanded labels have reached a predefined quantity (e.g.
100,000 expanded labels).

The last condition is similar to a time limit condition but the fact of using
the number of expanded labels instead of an actual time limit (e.g. one second)
allows the algorithm to remain deterministic, i.e. to always return the same
answer given the same input. The value for the maximum number of expanded
labels is tuned beforehand according to each city bus network, so that the
processing time for most requests is less than one second.

5.3 Heuristic label pruning

Beside the stopping conditions, some labels are pruned during the algorithm
processing if one of the following values of the label is much higher compared
to the value of the first option found:

• its estimated time to target λ(L) (e.g. over 1h30),

• its number of boardings b(L) (e.g. over 2 more boardings),
• its total walking distance d(L) (e.g. over 1 km).

The first solution option found is used as a reference for this heuristic label
pruning as it is one of the most likely to be chosen by the passenger, being one
of the earliest arriving solution options. Once the label selection in the main
loop is guided by the minimum expected arrival time to target, meaning that
the expected arrival time to target is expected to rise along the successive label
selections, the first condition can also be triggered as a stopping condition of
the main loop.

In order to avoid pruning labels with just slightly worse criterion values and
which can turn out to be very good options later, we introduce an equality

threshold for two criteria: the arrival time (90 seconds) and the walking
distance (30 seconds). For instance, two labels are considered to have a similar
arrival time if the difference between their respective arrival times is lower
than 90 seconds. In practice, when deciding between two possible solution
options arriving with a difference of less than 90 seconds, the passenger will
doubtlessly consider the other criteria (number of transfers, walking distance)
to make up his mind.

5.4 Pareto domination

Each time a new label is generated through its predecessor’s expansion, it is
submitted to a Pareto domination-based elimination on its node. This label
is compared, for every criterion, to all the previously generated non-dominated
labels on the same node and coming from the same bus route. When comparing
each objective value, the same thresholds as the ones described previously are
considered. Whenever a label is not worse than another one on every criterion
but is better for at least one criterion, it is said to dominate the other label.
Every dominated label is discarded from the graph.

Figure 7 plots feasible options or labels (squares and circles).

The green squares are the Pareto-optimal options of this set of points,
and the solid line depicts the Pareto frontier. Every option in the upper right
corner (red circles) is dominated by at least one Pareto-optimal option. When
considering the threshold to compare the options, the Pareto frontier becomes
the strip between the original Pareto frontier and the dashed line to its right.
In this case, the option depicted by the red square becomes Pareto-optimal.

If two non-dominated labels have the same sequence of bus routes (recall
the definition of R∗(P) in section 3.3), their last transfer are compared ac-
cording to the transfer location preference introduced in section 3.5. If one of
the transfers is preferable (at a terminal while the other one is not, or at a
previous node), the label corresponding to the other one is discarded.

Fig. 7 Example of Pareto frontier considering two criteria: arrival time and total walking
distance

6 Results and choice of value of the A* speed σ

Tests were performed in two Brazilian cities where our Trip Planner is available
for the population: Florianópolis and Guarujá. Table 4 gives an insight on the
size of the problems related to these cities.

Table 4 Problem size for the tested cities

City Bus stops Links Routes Daily trips

Florianópolis 2512 23575 306 7854
Guarujá 697 6855 64 2364

For both cities, we ran the algorithm for a set of previously chosen origin-
destination locations over the network and for requests at a specific day and
several times along the day, so as to cover the whole timetable. The origin-
destination pairs in the test were chosen according to their high processing
time over a big set of randomly chosen origin-destination pairs, for a request
at a specific time.

Figure 8 depicts the tests carried on in Florianópolis with the speed pa-
rameter σ of the A* heuristic (see section 5) varying between 0 and +∞. Each
point in the chart is an average value over a set of 180 requests as described
above (several origin-destination pairs and several times along the day). The
average number of solution options gives an insight of the quality of the algo-
rithm. Obviously, similar solution options, such as two options with the exact
same routes and trips but distinct get on/off stops, are considered only once.

The value σ = 0 means that the next label to be expanded is chosen only
according to its distance to the target node (and disconsidering its current

Fig. 8 Influence of the speed parameter of the A* procedure on the processing time and
number of solution options in Florianópolis, Brazil

time), whereas setting σ = +∞ means chosing according to the label’s cur-
rent time and disconsidering its location. Any value in between balances both
attributes.

Figure 8 shows that in Florianópolis, the average processing time increases
with the A* speed, but the number of solution options decreases after a max-
imum value obtained around σ = 10. Interestingly, this value of the A* speed
doesn’t make the A* heuristic function admissible because it will not always
give a lower bound on the actual arrival time at the target location. This is
especially the case when, considering a label location and time, there is a bus
just about to arrive at this location that can take the passenger directly to
the target location (as it will probably drive faster than 10 km/h). However,
the tests empirically show that this value is one of the best for the variety of
options and yields an acceptable processing time (around 1140 ms).

Figures 9 and 10 show maps of label expansion for the cases σ = 3 and
σ = 10, respectively, for the same request as the example in section 2. The
origin and destination of the request are the green and red squares, and each
expanded label during the algorithm is depicted as a circle with a color gradient
between yellow and purple, depending on the step in which the label was
expanded (purple for a later step). The higher the value of σ, the more labels
are expanded along the algorithm even if some label expansions look useless.
This explains why the average processing time tends to rise with high values
of the A* speed σ.

Figure 11 plots a similar chart as above for the tests run in Guarujá over
a set of 650 requests for each value of the A* speed σ. In this case, both
the number of solution options and the processing time remain somewhat
constant for σ > 20. For σ < 20, the number of options rises continuously
and the processing time increases to its maximal value (still less than 800 ms)
at around σ = 2 and decreases afterwards. As for Florianópolis, σ = 10 is a

Fig. 9 Label expansion map for a request in Florianópolis and σ = 3

Fig. 10 Label expansion map for a request in Florianópolis and σ = 10

good setting but for Guarujá it seems that σ = 20 or higher is slightly better.
These values of the A* speed parameter σ give a good balance between the
processing time and the solution quality in both cases.

From the Guarujá test details, we noted that distinct values of σ > 20
present a high probability to return exactly the same options, unlike the Flo-
rianópolis case. The processing time is also always lower in Guarujá than in
Florianópolis (which can be explained by the problem sizes given in table 4),
but the average number of options is higher in Guarujá. This is certainly be-
cause of the structure of the bus route network: in Guarujá there are lots
of routes sharing subroutes one with another, whereas in Florianópolis some
remote areas are served by a single route.

Fig. 11 Influence of the speed parameter of the A* procedure on the processing time and
number of solution options in Guarujá, Brazil

7 Conclusion and perspectives

In this paper, we described a multi-objective Bus Passenger Trip Planning
Problem and explained how it can be solved, either for its arrival time or de-
parture time version, through an A*-based algorithm where Pareto-dominated
labels are discarded. The tests show that using the right value for the A* speed
(10 for Florianópolis, 20 for Guarujá) optimizes the algorithm performance as
well as the quantity and quality of the options given to the user.

We focused on the impact of changing the A* speed value over the solution
quality. Other parameters, such as the equality threshold values, also have
a significant influence on the result and could be tested in the same way.
We are also aware that the algorithm would probably be even more powerful
with some improvements, such as preprocessed transfer options, with no need
of constant lookup in the timetable. Furthermore, in the A* procedure, the
estimated time from a given node to the target should be calculated using the
bus route network and the timetable so as to get a better lower bound and
possibly to avoid the need of an A* speed parameter.

Still, our Trip Planning tool has been continuously available in several
Brazilian cities for several years and provides a wide range of solution paths
within a couple of seconds or less. Whoever uses the Trip Planning tool, even
longtime users of the bus transit network, can come up with some surprising
route options. It is a good incentive for public transport in traffic-crowded
cities like Florianópolis: being the home city of the three authors, we can only
confirm the benefit of having a reliable Trip Planning tool for the better use
of bus transportation.

References

Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T, Sanders P,
Wagner D, Werneck RF (2015) Route Planning in Transportation Networks.
Microsoft Research Technical Report pp 1–65

Brodal GS, Jacob R (2004) Time-dependent networks as models to achieve
fast exact time-table queries. In: Electronic Notes in Theoretical Computer
Science, vol 92, pp 3–15, DOI 10.1016/j.entcs.2003.12.019

Cooke KL, Halsey E (1966) The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis and
Applications 14(3):493–498

Delling D, Pajor T, Werneck RF (2012) Round-Based Public Transit Routing.
Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12) pp 130–140

Dreyfus SE (1969) An Appraisal of Some Shortest Path Algorithms. Opera-
tions Research 17(3):395–412

Idri A, Oukarfi M, Boulmakoul A, Zeitouni K, Masri A (2017) A new time-
dependent shortest path algorithm for multimodal transportation network.
Procedia Computer Science 109:692–697

Jariyasunant J, Work DB, Kerkez B, Sengupta R, Bayen AM, Glaser S (2010)
Mobile Transit Trip Planning with Real-Time Data. Transportation Re-
search Board 89th Annual Meeting (September):1–17

Mandow L, De La Cruz JLP (2010) Multiobjective A* search with consistent
heuristics. Journal of the ACM 57(5):1–25

Nannicini G, Delling D, Schultes D, Liberti L (2011) Bidirectional A* search
on time-dependent road networks. Networks 59(2):240–251

Pyrga E, Schulz F, Wagner D, Zaroliagis C (2008) Efficient models for
timetable information in public transportation systems. Journal of Experi-
mental Algorithmics 12(2):1

Sanders P, Mandow L (2013) Parallel Label-Setting Multi-Objective Shortest
Path Search. Proceedings - IEEE 27th International Parallel and Distributed
Processing Symposium, IPDPS 2013 pp 215–224

Wang S, Lin W, Yang Y, Xiao X, Zhou S (2015) Efficient Route Planning on
Public Transportation Networks. Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data - SIGMOD ’15 pp 967–982

Wu Q, Hartley J (2004) Accommodating user preferences in the optimization
of public transport travel. International Journal of Simulation: Systems,
Science and Technology 5(3-4):12–25

Yang Y, Wang S, Hu X, Li J, Xu B (2012) A Modified K-Shortest Paths Al-
gorithm for Solving the Earliest Arrival Problem on the Time-Dependent
Model of Transportation Systems. Proceedings of The International Multi-
Conference of Engineers and Computer Scientists II:1562–1567

Zhao L, Ohshima T, Nagamochi H (2008) A* algorithm for the time-dependent
shortest path problem. The 11th Japan-Korea Joint Workshop on Algo-
rithms and Computation (WAAC08) pp 36–43

	Context
	The Multi-Objective Bus Passenger Trip Planning Problem
	Time-dependent formulation with timetable
	Trip Planning by Arrival Time
	A*-guided algorithm with Pareto domination-based elimination
	Results and choice of value of the A* speed
	Conclusion and perspectives

